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Abstract: In the past decades, much attention has been paid
to toxicity assessment of nanoparticles prior to clinical and
biological applications. While in vitro studies have been
increasing constantly, in vivo studies of nanoparticles have
not established a unified system until now. Predictive models
and validated standard methods are imperative. This review
summarizes the current progress in approaches assessing
nanotoxicity in main systems, including the hepatic and
renal, gastrointestinal, pulmonary, cardiovascular, nervous,
and immune systems. Histopathological studies and spe-
cific functional examinations in each system are elucidated.
Related injury mechanisms are also discussed.
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1 Introduction

Nanoparticles (NPs) are particles with the size of 1-100 nm.
Current investigation progresses have rendered NP appli-
cations in biomedical, bioengineering, and optical fields.
Much attention has been drawn to NPs’ toxicology, which
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poses possible threat both medically and environmentally.
From a biomedical perspective, NP toxicology reveals an
interaction between the physicochemical characteristics of
NPs and their biological effects. Assessments of NP toxicity
need a set of design rules. During the past decades, in vitro
toxic characterizations of NPs have been well summarized
and compared. Marquis et al. [1] reviewed the analytical
methods in respect to proliferation, necrosis, apoptosis,
DNA damage, and oxidative stress, which are related to
the main mechanisms of cytotoxicity. While in vitro studies
have been performed extensively [2], the significance of
nanotoxicity in vivo studies is being emphasized [3]. Rela-
tively long-term, complicated, and animal-sacrificed in vivo
studies come after in vitro assessments and are the inevita-
ble progress before wide-range application. Although many
reviews have summarized the methods in both in vitro and
in vivo studies in certain nanostructures in different model
systems (Table 1), systemic evaluation remains indefinite.
Fischer [3] emphasized the importance of developing pre-
dictive models of NP toxicity assessment, whereas many
researchers have focused on histological changes [25] and
pharmacokinetic parameters like exposing [26], biodistri-
bution [27, 28], biochemistry metabolism, and clearance.
However, exploration of nanotoxicity remains superficial in
sacrificed animals. Based on the in vivo results of NP phar-
macokinetics, including homeostasis regulation, systemi-
cally evaluating the impact of NPs on the major systems,
including the hepatic, renal, digestive, pulmonary, hema-
tological, cardiovascular, nervous, immune systems, may
provide profound insight into this field. This review sum-
marizes the recent progress of toxic assessments of NPs
from the perspective of single systems.

2 Systemic assessment

On a physiological basis, nanotoxicity can be tested from
pathological changes, including morphologic changes
(gross, microscopic, and ultrastructural changes) and func-
tional damage. The mechanisms underlying NPs’ physi-
ological interactions range from cells to organs and were
discussed in the latest review [29]. Additionally, in terms of
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Table 1: Assessments of some NPs in medical use.
Categories Application Assessments References
In vitro In vivo
Fe,0, Contrast agent (MRI) Cytotoxicity Distribution [4, 5]
labeling and tracking
Ag Antimicrobial agent Genotoxicity, cytotoxicity, cellular uptake Pulmonary toxicity, [6-8]
hepatotoxicity, immunotoxicity
Au Biolabel, biosensor, Cytotoxicity Hepatotoxicity, spleen/lung [9-11]
drug carriers toxicity
Tio, Biomedical ceramic Cytotoxicity (lung, nervous, hematopoietic, Skin toxicity [12,13]
implanted biomaterial etc.), genotoxicity, microvascular and
sterilization mitochondrial dysfunction
PEG Drug carriers Cytotoxicity Immunotoxicity [14, 15]
CNT Building blocks Toxicokinetics Hepatotoxicity, pulmonary [16-19]
toxicity
PLGA Drug carriers Macrophage uptake, phototoxicity Nephrotoxicity [20-22]
SLN Drug carriers LD,,, cytotoxicity, tissue injury Lung toxicity [23, 24]
Fe,0,, Iron oxide; TiO,, Titanium dioxide; PEG, Poly(ethylene glycol); CNT, Carbon nanotube; PLGA, Poly(p, llactideco-glycolide); SLN, solid

lipid nanoparticles; LD, , Median lethal dose.

50°

in vivo studies, the selection of animal models is the initial
step. Although many animal models have been built, a stand-
ard and predictive model is still underdetermined. Besides
the most common experimental mice and rats, zebrafish
[30, 31], rabbits [32], and Caenorhabditis elegans [33] were
also used in nanotoxicology studies. As the explicitly known
genome and developed application in toxicity investigation,
mice and rats would be more appropriate models in nano-
toxicology studies, which is addressed below (Figure 1).
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In vivo assessments are divided into two main cat-
egories. One involves tissue structure changes [34, 35],
apoptosis [36, 37], and inflammation infiltration in main
organs (kidney, spleen, lung, brain, and heart). Another
one targets certain systems, whose structural specificities
are liable to concentrate NPs. For instance, hepatic sinu-
soid and kupffer cells are the fundamental structures for
liver function in metabolism and detoxication, in which
NPs are liable to be deposited, as well as in renal filtration
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Figure 1: In vitro toxic characterization has been tested in respect to p

roliferation, necrosis, apoptosis, DNA damage, and oxidative stress.

Mice and rats would be more appropriate models due to their explicit genome for toxicity tests of organs including hepatic and renal, gastro-
intestinal, pulmonary, hematological, cardiovascular, nervous, reproductive, and immune systems in terms of histopathological changes

and functions.
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membrane. Consequently, combined with the expos-
ing ways (ingestion, injection, transdermal delivery, and
inhalation) and applications, appropriate assessment
models could be established, especially for the drug deliv-
ery of NPs [38].

2.1 Biodistribution

Any single physicochemical property of NPs can influence
the distribution, which at a certain extent determines the
material toxicity. Size [27, 39, 40], surface charge, constitu-
ent [41, 42], and chemistries of the coating could affect NP
aggregation and excretion. Elucidating the biodistribu-
tion of NPs in organs is useful to guide the adjustment and
modification of NPs.

The most common way of exploring the distribution
is to remove the main organs [27] or tissues (lung, liver,
kidney, heart, spleen, pancreas, brain, fat, and muscle)
after animal sacrifice, then track the NPs according to
their respective characteristics using physical detection
methods. For some metal NPs, their intrinsic properties
could be probed by specific instruments. Indeed, gold
composite nanodevices in mouse tumor tissues could
be explored by instrumental neutron activation analy-
sis [27]. Si and Cd [34] concentrations could be deter-
mined by inductively coupled plasma optical emission
spectrometry. For other varieties of NPs, some radiola-
beled and fluorescent-labeled skills have been exten-
sively applied. [PH]-PLA [42] has served as a marker to
show blood concentration and organ distributions of
poly(ethylene glycol)-grafted nanocapsules quantita-
tively. Some fluorescent-labeled particles [43] in tissue
homogenates were analyzed by plate reader. In some
other materials [44], like quantum dots with heavy metal
cores, it was more appropriate to apply multiplexing
and multicolor imaging through single-particle Forster
resonance energy transfer assays [45]. However, quali-
tative analysis with light microscope (LM) and electron
microscope (EM) failed to show sufficient and significant
evidence in current studies. Other imaging techniques,
including typical imaging instruments like magnetic
resonance imaging (MRI), computed tomography (CT),
positron emission tomography (PET), single-photon
emission computed tomography, optical imaging, and
ultrasound, were introduced in the latest reviews [46,
47]. Furthermore, multiscale, real-time, and quantitative
technologies were reported lately [48]. As some imaging
contrast agents have potential unintentional toxicity,
these tracing methods may aggravate the toxicity of NPs.
Moreover, the combination of contrast agents may alter
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the characteristics and consequently change the biodis-
tribution of NPs.

2.2 Hepatic and renal system

Hepatic sinusoid with Kupffer cells and renal glomerular
basement membrane, as main metabolism and clearance
organs, are fragile to toxic stimuli. Hepatic and renal tox-
icities are basic biosafety evaluation for drugs, as well
as NPs. Oxidative stress can be determined by the index
of superoxide dismutase (SOD) and glutathione peroxi-
dase (GPx) [49]. Ultrastructural alterations of the liver
and kidney are recommended primarily for morphologic
changes [42]. Cationic nanobubbles [50] were visualized
in histologic tests by section staining with haptoglobin
and H&E. Afterward, tissue apoptosis was observed with
terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) staining.

2.2.1 Hepatic assessment

Immunohistochemistry was used to detect liver fibrosis
and inflammation [50]. Serum enzymology analysis was
used for hepatic function evaluation, mainly including
alanine aminotransferase, aspartate aminotransferase
[51], c-glutamyl transferase, and alkaline phosphatase
[52], which indirectly and quantitatively reflect functional
changes. Multiple automated hematology analyzer and
automated chemistry analyzer are advantageous for the
comprehensive analysis if conditions are permitted [53, 54].

2.2.2 Renal assessment

Histopathological study is useful to indicate renal glo-
merulus degeneration. The different pathologic changes,
like glomerulosclerosis and collagenous tubulointersti-
tial matrix, can be confirmed by immunohistochemistry
by detecting fibrotic and mesenchymal markers trans-
forming growth factor-f1, interferon-6, type I collagen,
fibronectin, and vimentin [55]. Cell proliferation can be
assessed by measuring proliferating cell nuclear antigen
[37]. Some kidney special dyeing, including PAS, PASM,
and Masson, can be observed under LM [56]. The path-
ological diagnosis can be also determined by EM. From
a functional aspect, kidney indices [57] are commonly
measured. Gandhi et al. [58] tested renal variables includ-
ing total proteins, albumin, and glomerular filtration
rate. Urine protein, hematuria, urine albumin, and creati-
nine ratio [59] were also examined to evaluate the injury
degree of the glomerular filtration membrane.
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2.3 Gastrointestinal system

Compared with injection, oral administration of drugs or
others is considered favorable due to convenience and
compliance for patients. Drug bioavailability through oral
administration, however, is limited because of physiologi-
cal barriers of the gastrointestinal tract (GIT). With the
improvement of nanocapsule transportation, some new
drug delivery systems are gradually being developed, e.g.
polymeric NP [60], which prevents biologicals from inacti-
vation and degradation by acid and enzymatic barriers of
the GIT. There are a majority of researches that report the
benefits of NPs, such as the reversal of nonsteroidal anti-
inflammatory drug-induced gastrointestinal injury [61]
and radioprotection [62] from cancer radiotherapy. Cerium
oxide NPs [63] were also reported to protect gastrointesti-
nal epithelium from reactive oxygen damage. Neverthe-
less, the hazardous impact from NPs cannot be ignored.
Exposure to TiO, NPs interfered in nutrient absorption of
metal contents [64]. Histological assay should be the initial
step in which GIT microvilli and epithelial atrophy [65, 66]
are observed under EM, and the number of mast cells [64]
in the stomach should be counted. Besides, functional
tests of GIT were also necessary. Absorption function could
be reflected indirectly by the evaluation of metal content
and electrolyte. Acid-base unbalance like metabolic alka-
losis occurred after the overstock of HCO,", when certain
mental NPs reacted drastically. A novel method quantita-
tively monitored the digestion of intramolecular-quenched
protein under fluorescence spectroscopy in zebrafish [65]
and showed digestive malfunction and developmental
abnormalities.

2.4 Pulmonary system

Considering environmental issues, the initial researches of
pulmonary toxicity were concentrated on inhalable parti-
cles [67, 68]. NP, as a new material with targeting and non-
invasive characteristics in drug delivery system, is another
category related to pulmonary impact. To detect pulmo-
nary accumulation of NPs, MRI [69] was used to visualize
antibody-conjugated superparamagnetic iron oxide (SPIO)
NPs in a lipopolysaccharide-induced chronic obstructive
pulmonary disease mice model. The most common method
is intratracheal instillation for long-term [70, 71] and short-
term [72] toxicity assessments, in which the bronchoal-
veolar lavage (BAL) fluid [73] is collected for biochemical
analysis, including lactate dehydrogenase (LDH) assay.
LDH index is useful to indicate pneumonocyte injury. As
a crucial indicator of inflammatory reaction, the number
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of BAL-recovered neutrophils [74] is counted to indicate
the extent of the inflammation. Although tissue studies are
less commonly applied, pathology and apoptosis research
was occasionally used in these systems. Additionally, lipid
peroxidation (LPO) and glutathione production were used
to reveal oxidative stress [75].

2.5 Cardiovascular system

For each of the NPs whose exposure is by way of intra-
venous injection, impact on the cardiovascular system
is definite. The biocompatibility of hematology and
serum drew lots of attention. Phlebitis is arranged at
the first place of the common risk in clinical observa-
tion. Venous tolerance was explored in the auricular
vein [76], where eye wetness, brachychronic breath,
purple lump, blood clot, and edema were recorded.
Typical symptoms of phlebitis [77] can be seen through
pathological sections. Hemolysis and thrombosis are
other common risks. While hemolysis was often tested
in vitro [78], the vascular thrombosis model [79] of the
carotid artery was applied by platelet aggregation and
ATP release in rats. The routine study involving circu-
lation was to count each variation of complete blood,
including erythrocytes, total leukocytes, hemoglobin,
and hematocrit [36].

As for cardiac injury, serum markers, like troponin-T,
creatine kinase-MB, and myoglobin, should be analyzed
[80]. Cardiac calcium concentration associated with
contraction function and DNA damage also needs to be
determined. Although energy-related function damage
is concerned, ATP/ADP ratio and concentration of myo-
globin in the cardiac cells were calculated less in vivo.
Oxidative stress [81] biomarkers should be emphasized,
including LPO, reactive oxygen species, and antioxidant
enzymes like SOD, GPx, and catalase. Cardiac uptake of
NPs was revealed through radioisotope [***I] of iron oxide
NPs [82]. An energetics study involving nanocarriers,
which needs specific instrumentations, was performed
by Vlasova et al. [83] by monitoring the cardiovascular
parameters of arterial pressure and heart rate telemetri-
cally, along with an ex vivo study on isolated aorta rings.

2.6 Nervous system

In the nervous system, assessments were focused on the
drug delivery of solid lipid NPs (SLNs) in the brain. Espe-
cially, brain visualization was improved and drug perme-
ability across the blood-brain barrier was assessed with
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radiography techniques like PET and PET/CT system [84].
Magnetite-labeled NPs can act as a contrast agent in rat
brain MRI [85]. Transportation was further assayed by non-
invasive in vivo imaging and ex vivo optical imaging after
injection via the carotid artery [86]. The uptake of drug
into the brains was determined by the ratio of concentra-
tion in the brains (Cbr) to that in the plasma (Cpl) after
intravenous injection. The impairment can be reflected
by glutamate uptake dysfunction when NPs were translo-
cated to the olfactory bulb [87]. Confocal fluorescence [86]
studies were also applied to evaluate the uptake of brain
endothelial cells. Meanwhile, acute toxicity was visual-
ized by brain histology examination (LM & TEM) [88] and
fluorescence imaging [85].

Nervous injury is mainly assayed by behavioral and
electrophysiological studies. Behavioral studies were
performed in a well-established animal model [89] with
a series of clinical signs of toxicity, including tremors,
convulsions, salivation, nausea, vomiting, diarrhea, leth-
argy, etc. Moreover, spatial learning ability and memory
function associated with the hippocampus can be studied
by examining the expression of related genes [90]. Elec-
trophysiological investigation with electroencephalogram
bands [91] is convenient and reliable. Peripheral electrical
stimulus is one common method used in neurophysiology
study, in which caudal sensory nerve action potentials
[92] (caudal SNAPs) are recorded centrally from the tail.
As the high oxidative metabolism in the brain, the func-
tion of brain mitochondria, which is easily isolated by dif-
ferential centrifugation, is a good index to evaluate brain
nerve injury [93, 94]. The respiratory chain [95] of the
mitochondria provides opportunities for potential mecha-
nism study.

2.7 Immune and reproductive system

The interactions between all new chemical and biological
entities of NPs and the immune system need to be clarified
prior to application in medicine and biology. Superficial
modification of NPs determines their immunogenicity,
which may cause immunotoxicity by interacting with the
immune system [96]. Due to the complexity of the immune
system, the toxicity assessment of NPs relies on overall
changes of immune cytokines and molecules, immune
organs, hematological system, etc. For instance, the gen-
eration and release of ILs and tumor necrosis factors are
usually examined upon the use of NPs at high aspect
ratio, some metal or certain cationic [97, 98]. Histological
changes of major immune organs (e.g. spleen) are prefer-
ably observed by H&E dyeing [97, 99].
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The toxicity assessment of the reproductive system
is a relatively long-term study. Only a few researches
[100-104] have focused on this kind of chronic study.
However, it is a necessary step for the clinical approval of
drug products. So far, various in vivo and in vitro models
have been developed to study NP-associated toxicity in
relative organs of this system (as reviewed in [105]). Dif-
ferent from other systems, the reproductive system is
sexually divided into male female and male. Routinely
for the male, the testicular tissue structure, the epididy-
mal sperm parameters, the serous sexual hormones (e.g.
testosterone), and the concentration of NPs in serum and
testis need to be tested [106-108]. As for the female, sexual
hormone (e.g. follicle stimulating hormone, luteinizing
hormone, and estradiol) levels in serum need to be meas-
ured [105, 109]. Functions of major organs (ovary, uterus,
and vaginal tract) also need to be evaluated [110]. The
histopathological analysis is supposed to be done. Spe-
cifically, organs (testes, uteri, placenta, etc., of parental
or offspring generation) with potential resorption of NPs
are suggested to be inspected [111-114]. And last but not
the least, reproductive index and offspring development
need to be explored as some NPs were reported to pen-
etrate the placenta-blood barrier in rats [115, 116]. Mostly,
the teratogenicity of NPs on the fetus is of great concern
[115, 117]. Also, the survival, growth, development, and
reproduction of the offspring need to be mainly assessed
upon prenatal exposure [101, 113, 118].

3 Summary

The application of NPs is increasing along with the devel-
opment of nanotechnology, including drug delivery
system [119], contrast agent of imaging, and engineering.
Apart from the undesirable environmental NPs such as
nanosilver nano-TiO, and carbon nanotubes [120], more
attention needs to paid to medically applied nanoscale
materials in systematical biosafety assessments. While in
vitro studies indicate a promising direction, in vivo evalu-
ation, as a closer step to the clinical application, more
directly reflects the adaptation and injury of the organ-
ism. The present study elaborated the major systems and
organ assessments from the aspects of general histopa-
thology and specific function (Table 2). The ultrastruc-
tural changes and the relationships between tissues and
NPs were clearly revealed through electric microscope.
Original and specific pathologic changes were visualized
by specific dyeing on paraffin sections. Functional inju-
ries were detected by diverse biomarkers and high-tech
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Table 2: Assessments of NP-related systems.
Systems Related NPs Assessment References
Histopathology Function
Hepatic All H&E dyeing, Serum enzymology and hematology [50, 55]
immunohistochemistry, TUNEL analysis
Renal All Kidney special dyeing Creatinine ratio [56, 58, 60]
immunohistochemistry
Gastrointestinal Nanocapsules GIT microvilli, epithelial Blood metal content and electrolyte [67, 68]
atrophy (EM) test
Respiratory SPIO H&E dyeing, TUNEL Intratracheal instillation [70,72-75]
Cardiovascular Iron oxide - Venous tolerance, hemolysis and [36, 79, 80, 83]
thrombosis, complete blood count
Neuron SLN Brain histology, fluorescence Location, behavioral studies, [86, 87,90, 91,
imaging electrophysiological investigation, 93, 95, 100]
oxidative stress, mitochondria function
Immune All H&E dyeing Rabbit pyrogen test, LNPA, PFCA [97,120, 121]
Reproduction All H&E dyeing, TUNEL Hematology, serum biochemical [101, 111,
investigation, histopathological 122-124]

analysis, offspring development

SPIO, Superparamagnetic iron oxide; SLN, Solid lipid nanoparticles; LNPA, Lymph node proliferation assay; PFCA, Plague-forming cell assay.

equipments. However, in further studies and applications,
more attention should be paid to the correlations between
internal environment affecting in vivo studies and some
single factors controlled in the in vitro studies, although
some investigations have indicated that no correlations
existed between them [121, 125].
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